Saturday, November 5, 2011

DATA WAREHOUSING AND MINING SYLLABUS(CA5222)


DATA WAREHOUSING AND MINING SYLLABUS(CA5222)

LTPC 
3003

UNIT I DATA WAREHOUSING 10

Data Warehousing Components – Building a Data warehouse – Mapping the Data Warehouse to Multiprocessor Architecture – DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools – Metadata.


UNIT II BUSINESS ANALYSIS  8

Reporting and Query Tools and Applications – Tool Categories – Need for Applications – Cognos Impromptu – Online Analytical Processing (OLAP) – Need – Multidimensional Data Model – OLAP Guidelines – Multidimensional versus Multirelational OLAP – Categories of Tools – OLAP Tools and Internet.

UNIT III DATA MINING 8

Data – Types of Data – Data Mining Functionalities – Interestingness of Patterns – Classification of Data Mining Systems – Data Mining Task Primitives – Integration of a Data Mining System with a Data Warehouse – Issues – Data Preprocessing.

UNIT IV ASSOCIATION RULE MINING AND CLASSIFICATION 11

Mining Frequent Patterns, Associations and Correlations – Mining Methods – Mining various Kinds of Association Rules – Correlation Analysis – Constraint Based Association Mining – Classification and Prediction – Basic Concepts – Decision Tree Induction – Bayesian Classification – Rule Based Classification – Classification by Backpropagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction.

UNIT V CLUSTERING, APPLICATIONS AND TRENDS IN DATAMINING 8
Cluster Analysis – Types of Data – Categorization of Major Clustering Methods – K-means – Partitioning Methods – Hierarchical Methods – Density-Based Methods – Grid Based Methods – Model-Based Clustering Methods – Clustering High Dimensional Data – Constraint Based Cluster Analysis – Outlier Analysis – Data Mining Applications.

Total: 45

TEXT BOOKS

1. Alex Berson and J.Stephen Smith, “Data Warehousing, Data Mining & OLAP”, Tata McGraw Hill Edition, Tenth Reprint 2007.

2. Jiawei Han and Micheline Kamber, “Data Mining Concepts and Techniques”, Second Edition, Elsevier, 2007.

REFERENCES

1. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, “Introduction To Data Mining”, Pearson Education, 2007.

2. K. P. Soman, Shyam Diwakar and V. Ajay, “Insight into Data mining Theory and Practice”, Easter Economy Edition, Prentice Hall of India, 2006.

3. G. K. Gupta, “Introduction to Data Mining with Case Studies”, Easter Economy Edition, Prentice Hall of India, 2006.

4. Soumendra Mohanty, “Data Warehousing Design, Development and Best Practices”, Tata McGraw Hill Edition, 2006.



No comments:

Post a Comment